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Interaction of Electromagnetic Waves with General

Bianisotropic Slabs
John L. Tsalamengas, Member, IEEE

Abstract—In a number of recent papers an efficient, elegant

and systematic formulation technique has been developed
which, combining Fourier transform with matrix analysis
methods, was found to be quite suitable for problems related

to radiation by dipole or other sources in the presence of an
arbitrarily general stratified anisotropic medium. In the pres-
ent paper this technique is adapted and further extended so as

to allow the presence of general bianisotropic media described
by four tensors with no limitations on their elements. Two spe-
cific applications pertaining to some canonical problems of fun-

damental importance are included to exemplify the method and

demonstrate its usefulness, Considered here are: a) radiation

by an arbitrarily oriented elementary electric dipole source lo-
cated in the vicinity of a general bianisotropic slab, either

grounded or ungrounded, leading to the expressions of the

dyadic Green’s function of the structure, and b) reflection and

transmission of an arbitrarily polarized plane wave incident

upon such a slab, leading to closed-form concise expressions for
the reflection and transmission coefficient matrices. These de-

rivations may serve as a basis for formulating and solving nu-
merous propagation, radiation and scattering problems for
planar structures which use such materials as substrates.

I. INTRODUCTION

L AYERED anisotropic waveguides and related struc-

tures may find potential use in a very broad field of

applications; they include integrated-circuit technology

for microwave and millimeter wave applications, inte-

grated optics, optoelectronics, nonlinear signal process-

ing, laser beam modulation, optical filtering, geophysical

exploration, ionospheric research etc.

The corresponding boundary value problems are char-

acterized, however, by an almost forbidding algebraic

complexity when treated in the context of conventional

techniques (trying to manipulate a fourth degree rather

unwieldy wave equation). An alternative very fruitful for-

mulation, introduced by Berreman [1] and extensively

used in recent years by many researchers [2]–[7], is to

properly recast Maxwell’s equations into a first-order sys-

tem of coupled differential equations of the form:

(1)

where z is the axis of stratification, ii stands for a vector
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formed by the f and j components of the electromagnetic

field and ~ denotes a z-independent matrix.

In solving these reduced equations by methods of ma-

trix analysis the most important step is that of generating

the transition matrix of the system. This task has been

carried out in the past mainly by solving a tedious eigen-

value—eigenvector problem, or, alternatively-in the light

of these complexities—by using finite-difference algo-

rithms or various infinite series expansions for the tran-

sition matrix.

In this context, an extremely powerful, simple and sys-

tematic analytical technique has been recently presented

in a sequence of papers [8]–[ 10] for solving the basic

equations formulating a variety of problems related to ra-

diation and propagation of electromagnetic waves in the

presence of an arbitrarily general layered anisotropic me-

dium. What differentiates this novel approach from other

similar ones and leads to significant improvements is

mainly the possibility—based on repeated use of the Cay-

ley-Hamilton theorem—to express the transition m_atrix

as_a fourflerm lin~ar combination of the form: co~l +

cl~ + C2~2 + C3~ 3 where the expansion coefficients c1

(j = O, 1, 2, 3) assume very simple and highly sym-
metrical four-term algebraic expressions. Thus our algo-

rithm, in addition to being completely automatic, is so

simple and efficient that it requires only the trivial and

routine task of evaluating the 4 x 4 matrix ~3.

In the present paper this technique is adapted and fur-

ther extended so as to allow the presence of arbitrarily

general bianisotropic media. The basic formulation is pre-

sented in Section II followed by two specific applications

which serve to demonstrate the usefulness of the approach

as well as its superiority in comparison with alternative

ones used in the past by several other authors. The first

application (Section III) concerns with the detailed matrix

analysis of the radiation problem of an elementary electric

dipole source arbitrarily oriented in the air region above

a general, grounded or ungrounded bianisotropic slab.
This problem leads essentially to the determination of the

dyadic Green’s function of the structure; its fundamental

importance in formulating several propagation, radiation

and scattering problems for planar configurations which

use such bianisotropic substrates is obvious. Next, in Sec-

tion IV, assuming incidence of arbitrarily polarized plane

waves upon a general bianisotropic slab (grounded on un-

grounded), this technique is used, also, to obtain simple
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closed-form expressions for the reflection and transmis-
Z

sion coefficient matrices; these results are, also, basic in

formulating several scattering problems for bianisotropic ,=0

slabs loaded by strips, slots, cylinders etc. Finally, in
4X

:
j

Section V an extension of the results is attempted to the
:

z=.~ z

cases of a) inhomogeneous bianiso,tropic slabs or b) (=2,M2) (2)

n-layered bianisotropic media.

In the following analysis the exp ( +jtit) time depen-

dence, assumed for all field quantities, is suppressed

throughout.

Fig. 1, The geometry of a general bianisotropic slab between two isotropic
half-spaces.

z

T

II. BASIC FORMULATION
Z=O

With respect to the structure shown in Fig. 1, regions

(0) (z > O; air) and (2) (z < –~)–-assumed to be iso-

tropic—are characterized by the scalar constants (Ei, ~i, /zi

= OJ~) (i = O, 2), respectively. IIegion (1) (–~ < z

< O), on the other hand, is taken to be occupied by the

most general bianisotropic material characterized by four

tensors [1 1]: ~ (relative dielectr~ permittivity), ~ (rela-

tive magnetic pe~eability) and ~, ~ (cross coupling ten-

sors). All impressed sources are taken, to be located inside

region (0). When region (2) is filled with an electrically

perfect conductor the configuration c}f a grounded biani-

sotropic slab, shown in Fig. 2, results in.

A. Description of the Fields Inside dte Bianisotropic

Slab

The fields (~, H) pertaining to region (1) satisfy the

basic field equations [1 1]:

(2b)

In (2):

~:::)=(z#);7 = 9yx 9yy (lyz (3)

Using the notation:

()
o – az ay

VX= az o – ax (5)

–ay ax o

and working in the double, with respect to x and y, Four-

ier transform domain defined by:

1 (’Q I“@

%(kX, kY; Z) = ~ ~ ~ F(x, Y; z)
—cc —m

- exp ( jkXx + jkYy) & dy (6a)

z=-,j

-x

Fig. 2. The geometry of a grounded bianisotropic slab.

mm

F(.x, y; z) = H W.> ky; Z)
—m -m

“ exp ( –jkXx – jkY y) dkX dkY, (6b)

~ X, the transformed operator of V X in (5), becomes:

9X =

o –d/dz –jkY

) (--l--)

=d
G ~ –jii

d/dz O jkX = . .

.iky –jkX o
jii T O

(7)

In (7) the shorthand notation:

o –1
z=

()

= _~-1

10

was used.

Via (3)-(4) and (7)-(9), (2a) yields

(8)

(9)

+ jko(~z~t + ~ZZ3Cz). (lOb)
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In (10)-(11):

%(z) = Q,(L k,; Z); Q=.S.3C (12)

stand for the Fourier transformed components of the field.

Combining (lOb) with (1 lb) yields

(13a)

(13b)

Finally, combining (10a) with (1 la) and using (13) and

(8) leads to the following first-order system of coupled

differential equations:

:(*) =J&’:::*)(&)

where, after some simplifications,

(14)

(15)

– ~,[–v,,(j:’ – k; ’tiT) + CZji:]}.

(16)

The eva~uatio~ of the elements of the 2 x 2

matrices ~ and ~ from (15) and (16) is quite straightfor-

ward< On _the other hand, one may readily verify

that ~ and ~ satisfy the following symmetry (duality) re-

lations:

F(E> p, ‘g, q) = –E(P, E, –’q, –’$) (17)

~(c, w, $, q) = Z(LL, e, –’q, –:) (18)

which greatly add to the simplicity of the final expres-

sions. In view of (15)–(18), (14) is rewritten as

$(@[*-

—

(19)

where the stared quantities are defined by the duality re-

lations:

Qf(q p,, .$, q) = QO(IJ, c, –q, –$);

i,j=l,2; Q= A,B. (20)

As a partial check of thg correctness of (15)-(20), (9)-

(11) of [14] -valid for ~ = O, ~ = O (anisotropic me-

dium) and for k, = k. sin O, k> = O-may be derived very

simply (taking into account the different time dependence

used here).

B. General Solution of (19)

Following [8]-[ 10] the general solution of ( 19) may be

written as

EJ=exp(z’)c$’:))
In (21),

(FI(k,,ky; +7, ?’(k,, ky; Z)
?(z) = ?(k.r, ky; z) = =

T3 (L , kJ ; -7, ~q(k.,, k,; Z) )

= exp (zP ) (22a)

(?I, TQ, ?q, 71 being 2 X 2 sub-matrices) stands for the 4
x 4 transition matrix of the differential system (19). As

stated in the introduction, this matrix may most simply be

expressed in ~he form of a four-term linear combination

of powers of F:

~(d = co(~) ~J + ~,(~)~ + C2(Z) ~2 + C~(z) ~3. (22b)

The expansion scalar constants co, c1, Cz and c~ may be
determined in a very elegant manner from the Vander-

mode-type linear algebraic system:

co(z)

c, (z)

C2(Z)

c~(z)

.

exp (k, z)

exp (Alz)

‘1

(23)
exp ( Azz) “

exp (X3 z) 1
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Following some properties of the Vandermode matrix,

these coefficients can be expressed explicitly via the highly

symmetrical relations:

co(z) = – ~ I )@.3 ~o(z) – AoA2A3 FI (z)

– )@,h3 Fz(z) – AoAIh2 F3(z) (24a)

cl(z) = (~lh2 + &~3 + A3~I)F’o(z)

+ (AOA2 + A2A3 + A3AO)F1(Z)

+ (AOA~+ A,A3 + A3AI))F2(Z)

+ (hoAl + X1X2 + A2AO) Fj(z) (24b)

C2($ = –(XI + ~z + ~3)Fo(z) – (h. + ~2 + A3)F1(z)

– (h. + hi + h3)F2(z) – (A() + Al + A2)~3(z)

(24c)

C3(Z) = Fe(z) + F1(Z) + F2(z) + F3(z;) (24d)

F,(z) =
exp (Xlz)

(i, – Ao)(x, – A2)(~l – &)

(25a)

(25b)

slab through concise, elegant and highly symmetrical

closed-fo=m= ,expre~sions in terms of the 4 x 4

matrices P. P z and P 3 solely. Comparing with alternative

matrix approaches used in the past, the economy and sim-

plicity of our algorithm are striking. Furthermore, this

field representation is quite suited to the application of the

boundary conditions as will be seen below.

III. GREEN’S FUNCTION OF THE STRUCTURE OF A

GENERAL BIANISOTROPIC SLAB

A. Slab Between Two Dielectric Halj-Spaces

Consider the elementary, arbitrarily oriented electric

dipole source:

7(?) = p, 6(7 – 7’) (28)

having moment ~, and located at ?‘ = (x’, y’, z’) inside

region (0) of the structure shown in Fig. 1. The Fourier

transform of the fields excited at points ? = (x, y, z) of

this region may be expressed as a superposition of a pri-

mary excitation term (denoted by the superscript “p”)

added to a complementary one as follows:

where 61, (?2 denote z-independent expansion constants,

( ) --[ (.k: – k: k,k~ –j-y. skX
j~ok~l

E!(Z) “1 k,Xk,
——

m;(z) 8:fr2 o

,

k; – k2
o’ –j~o skY

yo s –jkY

o k

s = sgn(z – z’)

In (23)-(25) hi (i = O, 1, 2, 3)—the four eigenvalues

(taken to be distinct) of P(kX, k,)–are defined by

det (h~q – ~) = h4 + a1h3 + u2h2 + ci3h + ad = O.

(26)

The coefficients al (i = 1, 2, 3, 4) of the characteristic

equ_ation (26) may, also, be expressed explicitly in terms

of P through the relations:

cl, = –tr(F) (27a)

CY2= –~[cil tr(~) + tr(~z)] (27b)

cx3 = –~[a2tr(F) + altr(~;~) + tr(73)] (27c)

CX4 = det (~). (27d)

What has been up to now accomplished is a unified gen-

eral description of the fields inside a general bianisotropic

O
P.

Py

P:

(29b)

and

TO = (d + k: – k~)l/z (32)

(– m/2 < arg (yo) < m/2 in conformity with the radia-
tion condition). Following the notation adopted in (12)

the subscript “t” is used in (29) to designate field com-

ponents parallel to the x-y plane.

Similarly, the fields inside region (2) may be expressed

as

(%))’=(2)(::)’’2(’+’)
— .
~2 = L(–72, k2, ~2),

(33a)
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(–~/2 < arg (72) S m/2). (33C)

The scalar constants (81, 82) as well as (BI, 62) will be

determined via the application of the remaining boundary

conditions as follows:

a) at z = –d:

“C$?O=GX)’34)
and

b)atz=O:

Combining (34) with (35) and using, also, the property

T(d)= T-’(–d) (36)

of the transition matrix yields

r7(3,

[(%Zw)l-(q-j

m’(o) \

= bid” (37)

From (37) by inversion and using (29b) one gets

[1

a,

82 1

(

F1(d)~ + 7@M2—

P, 8~2 T3(d)~ + T~(d)A42

&

emerges (completed by a suitable delta function term that

properly accounts for the singular behavior of the fields

at the source position ? = 7‘ as explained in more detail

in [9]). -

B. Grounded Slab

With respect to the structure shown in Fig. 2, the fol-

lowing relation:

based on the boundary condition ~~1)( –d) = O, replaces

(34) whereas (35) remains unchanged. Combining (39)

and (35) yields:

from which one finally gets

The inversion of the partitioned 4 x 4 matrix in (38) can

be carried out by standard formulas; after this the deter-

mination of (al, &) and ((31, 82) is straightforward, lead-

ing to the expression of the Fourier transformed dyadic

Green’s function of the structure (through (29), (33a),

(35), and (21)). Finally, by applying the double inverse
Fourier transform, the space domain Green’s function

(39)

(,lb)

‘)
–1

–Z.
–%0

—

Equations (41 ) complete the determination of the fields

everywhere through (39), (21 ) and (29).

C. Radiation Field

The space wave (radiation) far-field of either of the

structures shown in Figs. 1 and 2 may be found in closed
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form through the following simple expressions (based on

the stationary phase asymptotic integration technique

[13]):

.?&(r, 0, @) = j -& [kX8j)(kX, kY; Zi)

+ kY8$!)(kX, kY; Zi)] exp ( –jki r) (42a)

~$)(r, O, ~) = –j ; cot O[kYZf)(kX, kY; Zi)

— k. t$)(lq, kY; Zi )] e]cp ( –jki r). (dzb)

In (42) (r, 0, ~) are the coordinates (in the system of

spherical coordinates centered at (x, y, z) = (O, O, O)) of

the observation point located inside region (i) (i = O or i

= 2), whereas

Zi= z’+ fori=O, orzi= –d for i=2

(43)

kX = ki sin 0 cos ~, kY = ki sin 8 sin +. (44)

The quantities 8 $)(kX, kY; z‘) (q = x, y) in (42) are deter-

mined through (29), (33a) and (38). Obviously, the case

i = 2 (observation point inside region (2)) pertains only

to the structure of Fig. 1.

IV. REFLECTION AND TRANSMISSION OF PLANE WAVES

IN THE PRESENCE OF A BIANISOTROPIC SLAB

The case of a general anisotropic slab between two

isotropic half-spaces, illuminated by an arbitrarily polar-

ized plane wave, has been treated in [10] and led to com-

pact closed-form expressions for the reflection and trans-

mission coefficient matrices. The extension of the analysis

to a general bianisotropic slab will be carried out here,

Furthermore, the case of a grounded bianisotropic slab

will be considered. This latter problem, in the special case

of an F – ~ grounded anisotropic slab has been recently

treated in [14] by solving an appropriate Ricatti matrix

differential equation.

Consider the following plane wave:

~inc(~) = ~0 exp [–jkO~’nc o 7]

= ZO exp [ –jkO(x sin * – z cos ~)] (45a)

H’”C(T) = EO exp [–jkOiinc “ 7-] = (kinC X 17inC)/~0

(45b)

incident from region (0) along the unit vector,$ ‘“C = 1 sin

~ – ~ COS 4 (where ~, measured from the.2 axis counter-

clockwise, denotes the angle of incidence). By decom-

posing each of the vectors ~. and Ho into components par-

allel and perpendicular to the plane of incidence:

~0 = –E~~j – E:~(kinc X j),

770 = [–E:y(Pnc x j) + Jm$l/ro (46)

this plane wave may be expressed as a superposition of

TM and TE (to y-axis) waves. Since the excitation is

y-independent and the structure is uniform in the

y-dwectlon It is concluded that the response is, also, in-

dependent of y (i.e., a/ily = O everywhere).

A. Reelection by a Grounded Bianisotropic Slab

In the single-with respect to x—Fourier transform do-

main the excitation field is written as:

[1Eo—— exp (jzko cos ~) 6(kX – k. sin ~). (47)
E(,

Denoting by (~r(;), ~r(?)) the field reflected into region

(0), it may be, also, written as a superposition of TM and

TE (toy) waves as follows:

~r(k.; Z) = [–Et”$ – E~E(j~of + kX2)/ko]e-7”Z

(48a)

mr(kX; Z) = ~ [–E~”(j-yoi + kXf)/ko + E$Ef]e-7”z

(48b)

(working again in the Fourier transform domain). Finally,

the Fourier transformed field excited at points inside the

bianisotropic slab is still represented by (21) (where k~ =

O as implied lby the condition d /13y = O). Application of

the boundary conditions in the way outlined in the pre-

ceding Section II .b leads first to the relation:

k, = k. sin IJ (49a)

and subsequently to the following equation—analogous to

(40):

‘(-w) (49b)

where in (49) the shorthand notation:

‘=(co:’-3‘=(co:’o
‘=XCo:i)‘=x ‘c:?“0’

was used.

Eliminating @$i)( –d) from (49b) leads to the following

relation between (l?~E, E~M ) and (l?~, E~~ ):

()

~;E

[?,(d) ?~’(d)fi - Q]
E;M

()

E~f
= [~’(d) ~j’(d)~ + ~] ETM . (51)

mc
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From (51) one readily gets

($)=’m(%)(52a)

where

Em = [T4(d) T;l(d)w – E]-@4(d) T;l(d)u + v]

(52b)

is the sought reflection coefficient matrix. In (52) (and

(51))

FP(d) = ?P(kO sin ~, O; d) (p = 2, 4). (52c)

B. Reelection and Transmission Through a General

Bianisotropic Slab

In addition to (45)-(48), the following relations maybe

written in this case for the fields transmitted into region

(2) and denoted by (~t(~), 27’(7)):

(53a)

+ @Ej)]e72(z + d) (53b)

Application of the continuity conditions at z = O, –d

yields again (49a) and, also, the relations:

(?,(–d) ~J-d)

?J-d) ?“(–d) )@:) )=(-:)($) “4a)

(20=(-3(:)+0(:)“4’)
~ = N/l - sin2 $/6, O

( o )1’

with ~P(–d) (p =

bining (54) yields

(54C)

1, 2, 3, 4) defined as in (52c). Com-

“(-X3 (55)

It may be shown that (55) is the same as (35) of [10] in

the case of an anisotropic medium (taking, also, properly

into account the differences in notation).

following relation results in

where

10, OCTOBER 1992

From (55) the

(56a)

(56b)

is the transmission coefficient matrix. Also,

(a=’mE)7 (57a)

where

is the reflection coefficient matrix pertinent to the present

structure.

V. GENERALIZATIONS

A. n-Layered Bianisotropic Medium

Shown in Fig. 3 is an n-layered structure composed of

a stratified general bianisotropic medium (regions desig-

nated”’bi’’; i= 1,2, “ . “ , n – 1) between two isotropic

half-spaces (regions (0) (z, > O) and (2) (z < –d)). The

excitation may be either an arbitrarily polarized plane

wave incident from region (0) and described by (45) or

the electric dipole source 7(7) of (28) located at F‘ inside

region (0).

The extension of the preceding analysis to this more

general case is quite straightforward. The presence of the

layered bianisotropic medium can be taken into account

by simply cascading the transition matrices corresponding

to the different regions.

In the case of an electric dipole primary excitation the

fields inside the isotropic regions (0) and (2) are still de-

scribed by (29)-(33) in terms of the scalar expansion con-

stants ((31, ~2) and (~,, 82) which are again determined by

(38) after replacing

by

(58a)

In (58a):

(58b)
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z=-d
n-z==== ‘T

[zn.l, un_l, <n-l ?nn-l)
‘bn-l)

=x-d d
n-l=-

‘P-’
(=2, M2) (2)

Fig. 3. Thegeometry ofastratified bianisotropic medium,

is given by (22b) for~ = ~(i) (i = 1, 2, “ “ . , n – 1)

andcorresponds tothetransition matrix of region (bi). In

this way and after completing the determination of the

field inside regions (0) and (2), the field inside any of the

bianisotropic layers (bi) may be found by either of the

following relations:

An approximate solution can be found in this case by ar-

tificially divicling the whole region ( –d < z < 0) into n

– 1 sublayers and using the model of Fig. 3. For suffi-

ciently large it (more precisely, for sufficiently small Di;
~=l,z,..., n – 1) one may assume a constant value

for each of the tensor elements q,, (q - t, K, $, q; r, s

= X, y, z) inside each subkiyer. The sought approximate
solution can then be derived on the basis of the results of

the pre~eding subsection. Alternatively, the transition

matrix T (whose knowledge suffices to complete the so-

lution everywhere) can be found from (58a) after

evah.tating @)(D, ) (i = 1, 2, 0 “ s , n – 1) using a Runge-

Kutta formula [15; (36)-(37)] correct to within the third

power of Di.

CONCLUSION

An analytical formulation technique has been presented

suitable for treating problems of interaction of electro-

magnetic waves with the most general bianisotropic lay-

ered media. l[n comparison with alternative matrix meth-

()

z,(z) ‘i) ods used in the past by other authors the economy and
. ‘(’+l@)Z+J T~(i)(z + d,) T ‘(i + ‘)(D,+,)=/. simplicity of this algorithm are striking. The specific ap-

\w v) /

(59a)

(59b)

In the case where the structure is grounded (i.e., when

region (2) is filled with a perfect electric conductor) the

field is most conveniently give~ by (5~b) after evaluating

(PI, &) by (41a) (in terms of T’ and TA given by (58) in

place of ?Z(d) and ?q(d)).

In the case of a plane wave excitation, the expressions

of the reflection and transmission coefficient matrices de-

rived in the preceding _section remain unchanged, Now

the block sub-matrices ~, (i = 1–4) are determined from

(58) for ky = O, k, = kO sin i.

B. hthomogeneous Bianisotropic Slabs

With respect to the structures of Figs. 1 and 2 we as-

sume now that

?=?(2); q=c>/J>i>q (-d < Z < O). (60)

placations considered in this paper lead to the expressions

of the dyadic (3’een’s functions for a grounded or un-

grounded arbitrarily general bianisotropic slab and, also,

to closed-form expressions for the reflection and trans-

mission coefllcient matrices. These results may serve as a

basis for formulating numerous radiation, scattering and

propagation problems for structures loaded by such bi-

anisotropic media. Furthermore, some useful extensions

to either inhomogeneous or n-layered bianisotropic struc-

tures were considered.
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