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Interaction of Electromagnetic Waves with General
Bianisotropic Slabs

John L. Tsalamengas, Member, IEEE

Abstract—In a number of recent papers an efficient, elegant
and systematic formulation technique has been developed
which, combining Fourier transform with matrix analysis
methods, was found to be quite suitable for problems related
to radiation by dipole or other sources in the presence of an
arbitrarily general stratified anisotropic medium. In the pres-
ent paper this technique is adapted and further extended so as
to allow the presence of general bianisotropic media described
by four tensors with no limitations on their elements. Two spe-
cific applications pertaining to some canonical problems of fun-
damental importance are included to exemplify the method and
demonstrate its usefulness. Considered here are: a) radiation
by an arbitrarily oriented elementary electric dipole source lo-
cated in the vicinity of a general bianisotropic slab, either
grounded or ungrounded, leading to the expressions of the
dyadic Green’s function of the structure, and b) reflection and
transmission of an arbitrarily polarized plane wave incident
upon such a slab, leading to closed-form concise expressions for
the reflection and transmission coefficient matrices. These de-
rivations may serve as a basis for formulating and solving nu-
merous propagation, radiation and scattering problems for
planar structures which use such materials as substrates.

I. INTRODUCTION

AYERED anisotropic waveguides and related struc-

tures may find potential use in a very broad field of
applications; they include integrated-circuit technology
for microwave and millimeter wave applications, inte-
grated optics, optoelectronics, nonlinear signal process-
ing, laser beam modulation, optical filtering, geophysical
exploration, ionospheric research etc.

The corresponding boundary value problems are char-
acterized, however, by an almost forbidding algebraic
complexity when treated in the context of conventional
techniques (trying to manipulate a fourth degree rather
unwieldy wave equation). An alternative very fruitful for-
mulation, introduced by Berreman [1] and extensively
used in recent years by many researchers [2]-[7], is to
properly recast Maxwell’s equations into a first-order sys-
tem of coupled differential equations of the form:

aw  =_
o W(z) 6]

where z is the axis of stratification, W stands for a vector
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formed by the X and  components of the electromagnetic

field and P denotes a z-independent matrix.

In solving these reduced equations by methods of ma-
trix analysis the most important step is that of generating
the transition matrix of the system. This task has been
carried out in the past mainly by solving a tedious eigen-
value—eigenvector problem, or, alternatively—in the light
of these complexities—by using finite-difference algo-
rithms or various infinite series expansions for the tran-
sition matrix.

In this context, an extremely powerful, simple and sys-
tematic analytical technique has been recently presented
in a sequence of papers [8]-[10] for solving the basic
equations formulating a variety of problems related to ra-
diation and propagation of electromagnetic waves in the
presence of an arbitrarily general layered anisotropic me-
dium. What differentiates this novel approach from other
similar ones and leads to significant improvements is
mainly the possibility—based on repeated use of the Cay-
ley-Hamilton theorem—to express the transition matrix
as_a four-term linear combination of the form: c¢yI, +
ciP + ¢,P? + ¢;P? where the expansion coeflicients c
(j =0, 1, 2, 3) assume very simple and highly sym-
metrical four-term algebraic expressions. Thus our algo-
rithm, in addition to being completely automatic, is so
simple and efficient that it requires only the trivial and
routine task of evaluating the 4 X 4 matrix P>.

In the present paper this technique is adapted and fur-
ther extended so as to allow the presence of arbitrarily
general bianisotropic media. The basic formulation is pre-
sented in Section II followed by two specific applications
which serve to demonstrate the usefulness of the approach
as well as its superiority in comparison with alternative
ones used in the past by several other authors. The first
application (Section III) concerns with the detailed matrix
analysis of the radiation problem of an elementary electric
dipole source arbitrarily oriented in the air region above
a general, grounded or ungrounded bianisotropic slab.
This problem leads essentially to the determination of the
dyadic Green’s function of the structure; its fundamental
importance in formulating several propagation, radiation
and scattering problems for planar configurations which
use such bianisotropic substrates is obvious. Next, in Sec-
tion IV, assuming incidence of arbitrarily polarized plane
waves upon a general bianisotropic slab (grounded on un-
grounded), this technique is used, also, to obtain simple
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closed-form expressions for the reflection and transmis-
sion coeflicient matrices; these results are, also, basic in
formulating several scattering problems for bianisotropic
slabs loaded by strips, slots, cylinders etc. Finally, in
Section V an extension of the results is attempted to the
cases of a) inhomogeneous bianisotropic slabs or b)
n-layered bianisotropic media.

In the following analysis the exp (+jwf) time depen-
dence, assumed for all field quantitics, is suppressed
throughout.

II. Basic FORMULATION

With respect to the structure shown in Fig. 1, regions
0) (z > 0; air) and (2) (z < —d)—assumed to be iso-
tropic—are characterized by the scalar constants (e;, u;, k;
= w@) (i = 0, 2), respectively. Region (1) (—=d < z
< 0), on the other hand, is taken to be occupied by the
most general bianisotropic material characterized by four
tensors [11]: € (relative dielectric permittivity), u (rela-
tive magnetic permeability) and £, 7 (cross coupling ten-
sors). All impressed sources are taken to be located inside
region (0). When region (2) is filled with an electrically
perfect conductor the configuration of a grounded biani-
sotropic slab, shown in Fig. 2, results in.

A. Description of the Fields Inside the Bianisotropic
Slab

The fields (E, H) pertaining to re glon (1) satisty the
basic field equations - [11]:

V X H = joeg(EE + £0oH) (2a)
V XE = —jopo(H + {5 'E); S0 = Vo/ €
(2b)
In (2):
Qoo Gry 9 —
_ 2 |4 )
= x = — 5 (3)
q dyx 4y 94y < ars .
qx qzy q:z
- G Y4x _ g
q: = < y>’ q; = < Z>, = (qu CIzy); “4)
qyx qyy qyz
q=¢u &0

Using the notation:

0 -0z dy
VX = gz 0 —ox &)
-0y ox O

and working in the double, with respect to x and y, Four-
ier transform domain defined by:

1' o] vOO
Fkys ky; 2) = an? S_m g_m F(x, y;2)

- exp (jk.x + jk,y) dx dy

(6a)

1871

—> N

(€5,H,)
oMo ()
2=0 — X
’ I 55
Z £, W, & 1 /%
z==d G
(e55M,) (2)

Fig. 1. The geometry of a general bianisotropic slab between two isotropic
half-spaces. -
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Fig. 2. The geometry of a grounded bianisotropic slab.

z=~d

Fix,y;2) = S_ S_ Fky, ky; 2)

- exp (—jkx — jk,y) dk, dk,, (6b)

V x, the transformed operator of VX in (5), becomes:

0 —d/dz —jk,
Vx =| d/dz 0 jke | =
Jky —Jjk 0

In (7) the shorthand notation:

— 0 -1 =
G < = -G~ (8)
1 0
k, r
, u = (k
<_kx> ’
was used.

Via (3)-(4) and (7)-(9), (2a) yields

—ky) &)

=
I

=d = ._ = w =
G-d_Z Sct - ]ui}cz = .]kO.(O 1(618t + 6281)
+ jkolE,3C, + E.3C)  (10a)
jﬁT@l = jk0§51(gzgt + ezzgz)
+ jko(£°3C, + £,3C,). (10b)

From (2b), by duality [12] (¢ © u, £ © —n, n © —§,
&— X, I, — —8), we get

=d .
—G-i— +ju8, = jkofo(w, 3¢, + p 3C,)
+~jk0(7tgt + ﬁzgz) (113)
—ja"€, = jkofo(B*3C, + pz3C;)
+ jko(ﬁzgz + nzzgz)' (11b)
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In (10)~(11):
Q. (k,, ky; z>>
Q, (ky. kg 2)

Q) = Q. k2 Q= 8.5 (12)

stand for the Fourier transformed components of the field.
Combining (10b) with (11b) yields

<8: > _ __1_< Ez: M::§‘0>
;}Cz D “Ezzf()—l N
Sopt

<—ﬁ’~ko“ﬁTl o
e | Eok'a

D= € M

6.1(1) = Qz(k,v’ ky: 7) = <

(&)

(13a)
2 Nzéx. (13b)

Finally, combining (10a) with (11a) and using (13) and
(8) leads to the following first-order system of coupled
differential equations:

<G &, > i <§(e, o Eom) | Blew, &, n)> <§>
&z \G &, \Tte, o & m) | e, . £, m / \ I

(14)
where, after some simplifications,
— Ay A
Ale, p, &) = >
g ! <A2l A22
- 1 S —
= =1 — D {tkg m — 7))
(N - k) + pEl]
- ﬁ:[e::(ﬁ: + k(;lﬁT) - 7’::%:]} (15)
Bee. . £ m) <Bn Blz>
, ks E.m) =
BZl B22
- I¢ P
= ~fom — o {7 = 7.)
paE - k'a"y — Ep]
=l (E = kg'w") + et}
(16)

The evaluation of the elements of the 2 X 2
matrices A4 and B from (15) and (16) is quite straightfor-
ward. On_the other hand, one may readily verify
that T and A satisty the following symmetry (duality) re-
lations:

T(c, u, £.m) = —B(u, e,

Ae, p, £, 1) = j(u, €,

-1, —g)
-, —§)

(17)

(18)

which greatly add to the simplicity of the final expres-
sions. In view of (15)-(18), (14) is rewritten as

—Ay —Ayp | =By By
d (g, . Ay A By, By,
3%<f> I AT
=Bl -BE| 4 4h

- &,
= Pk, ky; ¢, p, £, ) <=—3€> (19)

where the stared quantities are defined by the duality re-
lations:

Q;/k(ea s ga 77) = sz(l"’ﬂ € —1, _S)a

Lj=1,2,Q = A,B. (20)
As a partial check of the correctness of (15)-(20), (9)-
(11) of [14]-valid for & = 0, = O (anisotropic me-
dium) and for k, = k; sin 6, k, = O-may be derived very
simply (taking into account the different time dependence
used here).

B. General Solution of (19)

Following [8]-[10] the general solution of (19) may be
written as

— = X Z _
7, PR 0

_ <€,(0> >
= Tl ky2)| (—d < z<0). 1

3C,(0)
In (21),
- - ke, ky; z Ta ky, ky;
T@) = T(ky, ky; 2) = < ‘ 0 Z)>
» T3(kr’ 3 ~) T4(kw k z)

= exp (21:3) (22a)

(Ty, T, T;, T, being 2 X 2 sub-matrices) stands for the 4
X 4 transition matrix of the differential system (19). As
stated in the introduction, this matrix may most simply be
expressed in the form of a four-term linear combination
of powers of P:

T@ = @l + a@DP + ()P + s P>.  (22b)

The expansion scalar constants ¢, ¢, ¢, and ¢y may be
determined in a very elegant manner from the Vander-
mode-type linear algebraic system:

LN N N ] a@ exp (Noz)
1 N NN oz exp (\z
1 ; ; 1(2) _ p (M2) o3
AN M N ¢(2) exp (A;2)
1 N NN ¢3(2) exp (A;2)
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Following some properties of the Vandermode matrix,
these coeflicients can be expressed explicitly via the highly
symmetrical relations:

(@) = —NMAF(R) — MM Fi(2)

= MMM Fa(2) — MMM Fa(2) (24a)
ci(2) = (NN + N3y + MADF()

+ MM + MoNs + MA) Fi(2)

T oM+ MA3 + MR Fa(2)

+ oA + MNA + M) F3(2) (24b)

) = —(\ + M+ NMFR) — A + M+ NM)Fi(2)
= Mo+ N+ MF(2) — (N + N+ N)F3(2)

(24¢)
3(2) = Fo(@) + Fi(2) + Fy(z) + F3(2) (244d)
exp (\2)
F, = 25
1) = B~ Ao — M) (e — o) @5
exp (\2)
F =
W VT W W Y W (25b)
k2
_ jtoko! ( y
@\ 1 kyoky
<'s€';<z>> 8’ 0
~%YoS

o tkax! ke = ygla = 7'l

v

Yo
exp (A z)
F’7 = 25
N W WY WY W W
Fy(2) = exp (hs2) 25d)

A3 — M) A3 = A = N

In (23)-(25) N, G = 0, 1, 2, 3)—the four eigenvalues
(taken to be distinct) of P (k.. k,)—are defined by

det A\, — P) = A\ + o\ + o\ + s\ + ay = 0.
(26)

The coeflicients «, (i = 1, 2, 3, 4) of the characteristic
equation (26) may, also, be expressed explicitly in terms
of P through the relations:

o = —tr(P) (27a)
a0 = —ia; tr(P) + tr(PY)] (27b)
ay = —3loatr(P) + aytr(P) + tr(P)]  (27c)
ay = det (P). (27d)

What has been up to now accomplished is a unified gen-
eral description of the fields inside a general bianisotropic
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slab through concise, clegant and highly symmetrical
closed-form_ expressions in terms of the 4 X 4
matrices P. P’ and P* solely. Comparing with alternative
matrix approaches used in the past, the economy and sim-
plicity of our algorithm are striking. Furthermore, this
field representation is quite suited to the application of the
boundary conditions as will be seen below.

III. GrEEN’S FUNCTION OF THE STRUCTURE OF A
GENERAL BIANISOTROPIC SLAB

A, Slab Between Two Dielectric Half-Spaces

Consider the elementary, arbitrarily oriented electric
dipole source:

J(7) =P, &(F = 7') (28)
having moment p, and located at 7' = (x', y’, z’) inside
region (0) of the structure shown in Fig. 1. The Fourier
transform of the fields excited at points 7 = (x, y, z) of
this region may be expressed as a superposition of a pri-
mary excitation term (denoted by the superscript “‘p’’)
added to a complementary one as follows:

<€,(z> >“’) <€f<z)> <io><51> .
_ =1{__ + | = e 7 (29a)
5, (2) 50(2) M,) \ B,

where 3;, 3, denote z-independent expansion constants,

- k(z) kxky _j70Skx
) a2 . Px
ky — ko —Jjvosky
, Py
Yos$ —]ky p
0 2 :
s =sgn(z—z') (29b)

]
&l

0

—koSoky Jvoks
(vo> kov §0) = < T (30)
koSok. Jvyok,

= = j’YO kx kog‘()_lkv
My = M(vy, ko, o) = < o (31
" Jroky —kots 'k,

and

o = (ki + k5 — kp)'/? (32)
(—7/2 < arg (yo) = 7/2 in conformity with the radia-
tion condition). Following the notation adopted in (12)
the subscript ‘‘#”” is used in (29) to designate field com-
ponents parallel to the x-y plane.

Similarly, the fields inside region (2) may be expressed

as

<gt(2) >(2} = <§><61>€71(;+J)
@z(z) 1‘_’12 5,

= f(“YZ? k27 §‘2)9
2 = A=4(“‘Yz, kay $)s

(33a)

lll
N
!

& = Vup/e;  (33b)
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v2 = (k2 + kI — k)2

(—7/2 < arg (y,) < 7/2). (33¢c)
The scalar constants (6;, 6,) as well as (8, 8,) will be
determined via the application of the remaining boundary

conditions as follows;
a) atz = —d:

- \" (B \” [(T(-a) Ty-a)
<E(—d>> - <@(——d>> N <i(—d> i(—d)>
6)0)
M, 8y
b) atz = 0:
gt (O) (V)] gt (0) [€})] Et (0)
<E(0>> B <E(0>> <’J€f(0)>

<€,(0> > B
7.0/
3 20
) ()
M,/ \B, JL(0)

Combining (34) with (35) and using, also, the property

(34)

and

1
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emerges (completed by a suitable delta function term that
properly accounts for the singular behavior of the fields
at the source position 7 = 7' as explained in more detail

in [9]).

B. Grounded Slab

With respect to the structure shown in Fig. 2, the fol-
lowing relation:

<71<—d> 72<~d>> <€,<0>>
Ty(—d) Ty(—d)) \F,(0)

“(rcn) - o)
- \TO-a) %, 0)

Tyd)\
- < y )>JCE"(—d),

= (39
Ty(d)

based on the boundary condition §’(—d) = 0, replaces
(34) whereas (35) remains unchanged. Combining (39)
and (35) yields:

Fz(dw —fo} R(=d) | _ <§¢<0>

_ 40
JC?(O)> “

Td) = T™'(~d) (36) T.d) | -M, <31>
of the transition matrix yields By
5 from which one finally gets
K?‘(‘i) ?2(d)> @2 > ~<§° ﬂ b <B 1> — [Tyd) T Ty — Mol
Tyd) Tyd))\M,) | \M, B, B2
8, C (35O — Tu(d) T3 '(d) B0 (41a)
— g‘f(O) =5 (D _ -1 = (B op
= <§c’;’(0)>' (37) XP(—d) = T; (d){L()(ﬁz) + 8,(0)}. (41b)
From (37) by inversion and using (29b) one gets
&)
| _ 1 <7“1<d>7a + Tud) M —Z)>>l
i | 3T \TLWL + LM, | -M,
B,
Jooko ! (k3 — kG ki, Jrok,
0 —0 —jk, by Yo ' ©G8
Y 0 e F

The inversion of the partitioned 4 X 4 matrix in (38) can
be carried out by standard formulas; after this the deter-
mination of (6, 6,) and (B3, 3,) is straightforward, lead-
ing to the expression of the Fourier transformed dyadic
Green's function of the structure (through (29), (33a),
(35), and (21)). Finally, by applying the double inverse
Fourier transform, the space domain Green’s function

Equations (41) complete the determination of the fields
everywhere through (39), (21) and (29).
C. Radiation Field

The space wave (radiation) far-field of either of the
structures shown in Figs. 1 and 2 may be found in closed
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form through the following simple expressions (based on
the stationary phase asymptotic integration technique

[13]):

, 27 .
E® = 7 Q) -
s (7‘, 19’ )] J rsin @ [kxsx (kxa ky, Z )

+ k, Sg)(kx, ky; ] exp (—jk;r)  (42a)
ED _ .2z (i) i
90, 9, ¢) = =j == cot 91k, 8 ks, ky; )
— k8V(ky, kyy 2] exp (—jk;r).  (42b)

In 42) (r, &, ¢) are the coordinates (in the system of
spherical coordinates centered at (x, y, z) = (0, 0, 0)) of
the observation point located inside region (i) (i = O or i
= 2), whereas

orzl = —=d for i =2
(43)
(44)

The quantities 83)(kx, ky; 2') (g = x, y) in (42) are deter-
mined through (29), (33a) and (38). Obviously, the case
i = 2 (observation point inside region (2)) pertains only
to the structure of Fig. 1.

Zi=2z7"4+ for i=0,

k., = k; sin & cos ¢, k, = k; sin ¥ sin ¢.

IV. REFLECTION AND TRANSMISSION OF PLANE WAVES
IN THE PRESENCE OF A BIANISOTROPIC SLAB

The case of a general anisotropic slab between two
isotropic half-spaces, illuminated by an arbitrarily polar-
ized plane wave, has been treated in [10] and led to com-
pact closed-form expressions for the reflection and trans-
mission coefficient matrices. The extension of the analysis
to a general bianisotropic slab will be carried out here.
Furthermore, the case of a grounded bianisotropic slab
will be considered. This latter problem, in the special case
of an € ~ u grounded anisotropic slab has been recently
treated in [14] by solving an appropriate Ricatti matrix
differential equation.

Consider the following plane wave:

E™(F) = Eo exp [—jkok™ - 7]
= Eg exp [—jko(x sin ¥ — z cos ¥)]

H™(7) = Ho exp [—jkok™ - 7] = (K™ x E™) /¢,
(45b)

~i

(45a)

incident from region (0) along the unit vector ki = £ sin
Y — 2 cos ¢ (where ¥, measured from the Z axis counter-
clockwise, denotes the angle of incidence). By decom-
posing each of the vectors £y and Hj into components par-
allel and perpendicular to the plane of incidence:

Ey= —Ep'y — Enk™ X 9),
[—EME™ x 9) + Ee$l/

this plane wave may be expressed as a superposition of
TM and TE (to y-axis) waves. Since the excitation is

H, (46)
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y-independent and the structure is uniform in the
y-direction it is concluded that the response is, also, in-
dependent of y (i.e., 8/dy = 0 everywhere).

A. Reflection by a Grounded Bianisotropic Slab

In the single—with respect to x—Fourier transform do-
main the excitation field is written as:

{g‘“c(kx; 2) }
EinC(kx; 2)
Eq
= éﬁ } exp (Jjzkg cos ¥) 6k, — kg sin ¥).  (47)
0

Denoting by (E'(7), H'(7)) the field reflected into region
(0), it may be, also, written as a superposition of TM and
TE (to y) waves as follows:

&k 2) = [-ES™ — ES(jvok + ke2) /kole "
(48a)
1

§ [=EGM(vo® + k2 /ko + Eg™9le "o
0

(ks 2) =

(48b)

(working again in the Fourier transform domain). Finally,
the Fourier transformed field excited at points inside the
bianisotropic slab is still represented by (21) (where &, =
0 as implied by the condition 3 /dy = 0). Application of
the boundary conditions in the way outlined in the pre-
ceding Section II.b leads first to the relation:

k., = kg sin ¢ (49a)
and subsequently to the following equation—analogous to
40):

3 (—d)

EJE
<E§M>

|:7‘2(k0 sin ¢, 0, d)J _Wj]
Tu(ko sin ¥, 0; d) | -0

V/\EM
where in (49) the shorthand notation:
cosy O = cosy O
= , U= ,
0 -1 0 1
1 /0 cos = 0 —cos
=— < ¢>, |4 L v (50
$o \1 0 $o \1 0
was used.

Eliminating 3C {P(—d) from (49b) leads to the following
relation between (EJE, EMM) and (ELE, EY):

TE
E inc >
™ /°
E inc

(49Db)

I

Qi

- = — — [EIF
[Tu(d) Ty 'YW — Q]<ETM>

0

= [Tyd) T; ()T + I=/]< (51)
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From (51) one readily gets
ElE _ /ETE
— Rm nc
<E3M> <EE£‘>
where

R, = [T:d) T (@)W — Q1 '[Ty@) T5; @)U + V]
(52b)

is the sought reflection coeflicient matrix. In (52) (and

(1)

(52a)

!

d) = T,k sin ¥, 0; d)

(p=2,4. (52

~

B. Reflection and Transmission Through a General
Bianisotropic Slab

In addition to (45)-(48), the following relations may be
written in this case for the fields transmitted into region
(2) and denoted by (E'(7), H'(F)):

gt(kx; Z) = [——EgM}A, — EEE(—jvzf + kxf)/kz]eh(“d)

(53a)
— 1
Rtk 2) = o+ [FE (-t + kD/k
2
+ E3"gleet ), (53b)
Application of the continuity conditions at z = 0, —d

yields again (49a) and, also, the relations:

Ty(~d) Ty(—d)\ [E,(0) -0\ /EE
<i<~d) i(—d>> <I’f?,<0>> =< K><E§M> (>42)
€,(0) ~U\ /E™ W\ /ETE

<E(0)> B < =V> <ETM> " <5><EEM> >4

5 <\/1 — sin® /¢, 0>’

0 1
— 1/0 =1 —sin®y/e,
=g 1 0 5 Er=52/€0
(54¢)

with 7,(~d) (p = 1, 2, 3, 4) defined as in (52c). Com-
bining (54) yields

ETE

<7f\ T,(d)0 — i(d)f) Eg™
0| T@)® - Tya)h /| ET
E™

T\ /E®\
i (—"‘v‘> <EM> | °
It may be shown that (55) is the same as (35) of [10] in
the case of an anisotropic medium (taking, also, properly
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into account the differences in notation). From (55) the
following relation results in

— Tm me ,
EM En
where

T, = (W' [Ti(d)6 — Ty(d)A]
~ 0 '[N8 ~ TyAI'W~'T +07'P)

(56a)

(56b)
is the transmission coeflicient matrix. Also,
< ElE > _ /ETE
= Fm< > (57a)
Eg" En

where

R, = WU - W T\(d)© — To(d)AIT, (57b)

is the reflection coefficient matrix pertinent to the present
structure.

V. GENERALIZATIONS
A. n-Layered Bianisotropic Medium

Shown in Fig. 3 is an n-layered structure composed of
a stratified general bianisotropic medium (regions desig-
nated **b;”’;i = 1,2, - - - , n — 1) between two isotropic
half-spaces (regions (0) (z > 0) and (2) (z < —d)). The
excitation may be either an arbitrarily polarized plane
wave incident from region (0) and described by (45) or
the electric dipole source J(7) of (28) located at 7' inside
region (0).

The extension of the preceding analysis to this more
general case is quite straightforward. The presence of the
layered bianisotropic medium can be taken into account
by simply cascading the transition matrices corresponding
to the different regions.

In the case of an electric dipole primary excitation the
fields inside the isotropic regions (0) and (2) are still de-
scribed by (29)-(33) in terms of the scalar expansion con-
stants (8, 8,) and (6,, §,) which are again determined by
(38) after replacing

Ty(d) T
d)=<1() 2<)>

7 D
Tod) Tyd)

by

= ?1 712 = = =

T = - _ = T(l)(DI) T(~)(D2) e T(’Z“I)(Dn_l)‘

T, T,
(58a)

In (58a):

TD,) = exp [D,PV); PO = Plk,, ky; €, B £ 7))

(58b)
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Fig. 3. The geometry of a stratified bianisotropic medium.

is given by (22b) for P = PO (i = 1,2, -+ ,n — 1)
and corresponds to the transition matrix of region (b;). In
this way and after completing the determination of the
field inside regions (0) and (2), the field inside any of the
bianisotropic layers (b;) may be found by either of tﬁ_e
following relations:

®

o — T(l) 7z + dz T(1+1) L’z T(z+2) Dz
T ( ) D) (Dy12)
- L\ (b
<o TR YD, <=. > 59
Dy-1) %) \s, (59a)
or
- ()
&, = =
-—t( =T + d,_)) T*"D(~D,_y)
3, ()

“TON=D,) - T(=Dy)

[ fo> 51> <gf(0) >}
. — + | . (59b)
M,/ \B, JCLO0)

In the case where the structure is grounded (i.e., when
region (2) is filled with a perfect electric conductor) the
field is most conveniently given by (39b) after evaluating
By, B) by (41a) (in terms of T, and T, given by (58) in
place of T,(d) and T,(d)).

In the case of a plane wave excitation, the expressions
of the reflection and transmission coeflicient matrices de-
rived in the preceding section remain unchanged. Now
the block sub-matrices 7, (i = 1-4) are determined from
(58) fork, = 0, k, = ko sin Y.

B. Inhomogeneous Bianisotropic Slabs

With respect to the structures of Figs. 1 and 2 we as-
sume now that
(—d <z <0).

g=q9@R); g=¢mp &1 (60)
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An approximate solution can be found in this case by ar-
tificially dividing the whole region (—d < z < 0) into n
— 1 sublayers and using the model of Fig. 3. For suffi-
ciently large n (more precisely, for sufficiently small D;;
i=1,2,---,n— 1) one may assume a constant value
for each of the tensor élements ¢q,, (¢ = ¢, u, &, 95 7, §
= x, y, 7) inside each sublayer. The sought approximate
solution can then be derived on the basis of the results of
the preceding subsection. Alternatively, the transition
matrix T (whose knowledge suffices to complete the so-
lution everywhere) can be found from (58a) after
evaluating T9(D,) i = 1,2, * * + , n — 1) using a Runge-
Kutta formula [15; (36)-(37)] correct to within the third
power of D;.

CONCLUSION

An analytical formulation technique has been presented
suitable for treating problems of interaction of electro-
magnetic waves with the most general bianisotropic lay-
ered media. In comparison with alternative matrix meth-
ods used in the past by other authors the economy and
simplicity of this algorithm are striking. The specific ap-
plications considered in this paper lead to the expressions
of the dyadic Green’s functions for a grounded or un-
grounded arbitrarily general bianisotropic slab and, also,
to closed-form expressions for the reflection and trans-
mission coefficient matrices. These results may serve as a
basis for formulating numerous radiation, scattering and
propagation problems for structures loaded by such bi-
anisotropic media. Furthermore, some useful extensions
to either inhomogeneous or n-layered bianisotropic struc-
tures were considered.
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